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J. Phys. A: Math. Gen. 17 (1984) L4734477 .  Printed in Great Britain 

LElTER TO THE EDITOR 

Inversion relation and phase transition of the Potts model 

T T Truong 
Institut fur Theoretische Physik, Freie Universitat Berlin, Arnimallee 14, D-1000 Berlin 33, 
West Germany 

Received 28 March 1984 

Abstract. The impact of some recently discovered automorphic properties of the partition 
function of the Potts model on the location of the phase transition is examined, in particular 
in the regime with mixed ferro- and antiferomagnetic interactions. 

An anisotropic q-component Potts model on a square lattice is defined by two interac- 
tion parameters K , ,  K 2  in the horizontal and vertical directions. The partition function 
per site Z(eKI,eK2) is known to obey three basic functional relations (Jaekel and 
Maillard 1982, Maillard and Rammal 1983) generated by: 
Duality: D 

Inverse transform: I 

~ ( e ~ i , e ~ ~ ) ~ ( e - ~ 1 , 2 - q - e ~ ~ ) = ( e ~ 2 -  1)(1 -q-eK2); 

Lattice symmetry: S 

Z(eKI, e K 2 )  = Z(e5 ,  eKI). 

Additional functional relations can be obtained from the composition of these 
basdic involutive transforms 0, I ,  S. We can therefore compute the value of Z at a 
large number of points (possibly infinite) once the value of Z is known at some point 
of the plane (eK!, eK2). This shows that a critical point whenever it exists is mapped 
into a set of critical points. A critical curve is thus mapped globally into itself by all 
the elements of the group of transformations generated by 0, I,  S. We can already 
verify that this necessary condition is fulfilled by the two critical curves known for the 
pure ferromagnetic regime (eK]> 1 and eKz> 1) and the pure antiferromagnetic regime 
(eK, < 1 and eKZ< 1) recently found by Baxter (1982). In particular, the action of the 
group on a presumed critical curve, although it may lead to curves in non-physical 
regions of eK1 and eK2, should not generate new lines in known physical regions, in 
any case. 

For the Potts model in the mixed regime (eK, < 1 and eK2> 1 or eKl > 1 and eK2< 1) 
Kinzel et a1 (1981) have proposed the following equations for the critical lines: 

(eK, + 1)(1 -e%) = q, (eK, + 1 )( 1 - e “ 1 )  = q. 

The first and second curves are respectively invariant under 0, I and 0, SIS. However 
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for q = 3 the action of (SZ)' on the first one generates the new critical line eKi (  1 - eK2) = 
3eK2 which is not acceptable since it is located again in the region 0 < eK2 < 1 and eKl > 0. 

In the following we propose a systematic use of the full group G generated by 0, 
Z, S to locate globally invariant curves which may appropriately describe the transition 
of the Potts model in the mixed regime found by Kinzel et al. 

To simplify the discussion we shall make use of the rationalised variables introduced 
by Jaekel and Maillard: 

(1) x = (eK[ - q+)/(eK' - 4-)1 y = (eK2 - q+)/(eK2- q-), 

where q+ = (1 - f q )  * [ f q ( q  - 4)]'/*. The generators of the group G are now expressed 
as point transformations in the plane ( x ,  y ) :  

D: ( x ,  Y ) +  ( - 4 + / Y ,  - 4 + / x ) ,  1: ( x ,  Y ) + ( 1 / X ,  d+/Y), s: (4  Y )  + (Y, x ) .  

As can be easily checked, D commutes with any element built from I and S. These 
elements are themselves divided into two classes: those exchanging x and y and those 
operating separately on x and y .  In the latter class are elements containing always an 
even number of S-operations such as, for m = 0,1,. . . ,m, 

( S O 2 " :  ( x ,  y )+(q3"x,  qY2"y), 

I(SIl2": ( x ,  y )+ ( l l q%,  q:m+21Y), 

(Is)2": ( X , y ) + ( q ; 2 m x ,  s'+"Y>, 

SZS(ZS)2": (x, y)+(q2+m+2/x ,  l /$ ,"y) .  

At criticality the difference between the formulations on the lattice and on the dual 
latitice is vanishing because order and disorder are crossing into each other: it would 
be more appropriate to locate the critical curves whenever they are in a physical range 
in the plane (eK),  eK2) as invariant curves under the 'extended' dualities: D(SZ)*", 
D(ZS)'", DZ(SZ)*, D(SZS)(ZS)2", for all integer m. 

The first transform D(SZ)2" is the mapping 

( 4  Y ) + ( - q : " + ' / Y ,  -l/q'+"-'x), 

xy = - q 2 m + '  and x y  = - q ; 2 m + '  

and admits possibly the invariant curve determined by the two equations 

The curve is then non-trivial if q2+" = * 1 or 4:" = 1. This is equivalent to saying that 
q+ = exp(2i1r/4m)~ or because of (1): 

q = 2 - 2 cos(2rk/4m) = 2 + 2  cos[21r(2m + k)/4m]. 

Hence q is a Tutte-Beraha number q4m,Zm+k. We obtain thus two curves x y  = * q + ;  
they correspond exactly to the ferro- and antiferromagnetic critical curves. Observing 
that any number 0 < q < 4 may be arbitrarily close to a q4,,,*,,,+k for an appropriate 
choice of m and k, we conclude that the result holds for any q and can be eventually 
extended to q > 4 by analytic continuation. Finally, had we started from D(ZS)" we 
would obtain precisely the same result. 

To deal with the Potts model in the mixed regime we consider the two remaining 
'extended' dualities: 

DI(SZ)2": ( x ,  y ) + ( - q ; * " - '  y ,  - - 9 2 = 1 + ' X ) ,  

DSIS(ZS)2": ( x ,  y)+(-q:"+' ,  - q ; 2 " - '  X I ,  
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which admit the invariant curves 

Obviously the curves are mapped into each other by S. Hence we shall designate a 
generic curve (r,) by 

y = -q:"' X 

and let m take values in both positive and negative integer values. (r,) has now the 
equation 

which is obviously invariant under the action of D ;  S maps (r,) into (r-,,,-'). So that 
the totality of all the curves (F,) m E B is globally invariant under G. 

Let us consider some simple cases. 
For q = 2  we have q+= 1 and there are only two curves corresponding to m = O  

For q = 3 we have q+ = j = 
and m = -1;  they are precisely those of the king model with mixed interactions. 

and three curves of equations: 

eK1+K2 - eKl +2eK2 + 1 = 0, eKl+K2+f(eK, +eK2) + 1 = 0, 

eK~+K2+2eK~-eK2+1 =o. 

The middle one is unphysical because it has no branch in the physical quadrant whereas 
the other two are precisely located in the mixed regime of the three-state Potts model. 
They depart from both axes at (0, 1) and (1,O) as for q = 2, and not at (0,2) and (2,O) 
as in the conjecture of Kinzel et a1 (see figure 1). 

explK,) 

Figure 1. Curves (r,) and (r,) for 9 = 2, 3, 5 ,  6. The Kinzel er a1 curves are traced with 
dotted lines. 

,- 
Consider now q = 5 and 6 ,  for which q+ = f ( - 3  +J5), (-2, +A) is real and negative. 

We have an infinite number of curves now; however, only two are in the physical area 
of the first quadrant corresponding to m = 0 and m = -1 .  This can be seen upon 
inspection of (2) and by recalling that q+ is small and negative; so that for m large 
enough the (r,) recedes in the unphysical area. In fact for q large we have q+ = ( - l / q )  
and we reach again the same conclusion. 
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Suppose now that q = or q is a Tutte-Beraha number: 

q = q N , k  = 2 + 2  cos(2.rrkl N) ;  

then the corresponding curves (r,) take the form 

eKl+q-eK cos[.rrk(2m - l)/N/cos[.rrk(2m + l ) / N ]  

- eK cos[.rrk(2m +3)/ N/cos[.rrk(2m + 1)/ NI + 1 = 0. 

One might wonder what would happen to the Potts model with q = q 5 , 1  = 
2 +2 cos(2a/5) equivalent to the critical hard-hexagon model in the mixed regime. As 
pointed out, the group generated by I and S is finite and of order 10. Inspection 
shows that we do have ten curves; however, only two again corresponding to m = 0, 
4 are located in the physical region, and are mapped into each other by S. 

For q = 4, the limit between real and unimodular q+, care should be taken for 
example by considering a q N , k  arbitrarily close to 4, then taking the limit q + 4. 

Thus we have shown that by considering a group G which generates automorphic 
functional relations for the partition function per site of the Potts model we are led 
to consider 'extended' dualities, which yields all the known critical lines and a set of 
plausible lines in the mixed regime. It is very tempting to identify thus (r,) (invariant 
under D and I) as well as (r-l) (invariant under D and SZS, symmetrised inversion) 
with the actual transition lines, for they coincide with the exactly known results for 
q = 2 and are supported in the case q = 3 by the numerical findings of Kinzel et al on 
top of th'eir invariance propertiest. Of course we cannot say anything about the nature 
of the transition nor can we calculate the partition function on these lines, although 
it depends only on one variable. However, let 

Z 2 m  + I ( x )  = Z ( X ,  y ) I y =  -qy + lx  ; 

then we have the following functional relations for all m :  

Unlike the critical ferro- or antiferromagnetic case for q > 4 where (SI) '  performs an 
iteration along the critical curve, here (SI) '  merely iterate from curve to curve and the 
group contains no element which iterates along the same (I',,,). Thus the value of 
Z2, + l ( x )  is not sufficiently known from the previous structure. 

To close we would like to point out that the subset of transformations generated 
by S and I containing an odd number of S presents also some interesting aspects. 
Consider first the transformations (ISZ)(SZ)2" which exchange x and y. 

t The Kinzel er a/ curve in the x, y variables has the equation 

9; ' -9+-  9-  9+- 9;' - 
x y - q + - x  9= 0. 

1-9;*-1 l-q;'-q 

I t  cannot be described as the set of invariant points of any element of the group G. The same can be said 
about its S transform. 
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The invariant curves are of the form 

y = q:" +2x. 

They are also D invariant, as well as transforming among themselves under any 
combination of S and I. But as can be seen in the variables eKl and eK2, 

they are located all the time in the unphysical part of (eK], eK2). For example m = 0 yields 

, = 0. 
(-3 +JS) 1 +eK'+K,-eKZ 1 + [;(h - 3)12 q = 5 ,  q+ = 

2 f(J3 - 3) 
From (3) it is clear that for 4 2 4 ,  q is negative and for all m > O  the curves are 
unphysical. For q = 2 there exist only two curves: the one found above and eKl = eK2 
when m is odd. Similarly for q = 3 besides the curve found for m = 0 we have two more: 

e " 1 + ~ 2 + e ~ 1  + I  = O  and eKl = eK2. 

But we recall that these transforms are not dualities, hence the bisector eKI=eK2 
cannot be a critical line. 

To conclude it would be of interest to see how these ideas can be extended to 
anisotropic Z(N)-spin systems, to different types of lattices, and a check by numerical 
simulation for values of q different from 2 and 3 is most welcome. 
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